Ma

Some Generalizations of Gneiting's Univariate and Bivariate Models

Datum
01.11.2018
Zeit
13:30 - 14:30
Sprecher
Prof. Dr. Martin Schlather
Zugehörigkeit
Universität Mannheim
Serie
TUD Mathematik AG Analysis & Stochastik
Sprache
en
Hauptthema
Mathematik
Andere Themen
Mathematik
Host
Prof. Dr. Z. Sasvári
Beschreibung
(joint work with Olga Moreva) Gaussian random fields are completely characterized by their mean and their covariance function. In applications suitable classes of parametrized covariance functions are needed. Whilst in the univariate case a large number of classes is available, not that many classes exist in the multivariate case. In this talk we mainly focus on bivariate covariance functions that are generalizations or modifications of models that have been suggested by Tilmann Gneiting. In particular, the univariate cutoff embedding technique is transferred to the bivariate case. On that way, the results for the univariate case had to improved. As examples for the bivariate cutoff technique, we consider Gneiting's bivariate Matern model and modifications thereof. Finally, we show that Gneiting's generalized Cauchy model can be combined with the fractional Brownian motion to get a parametric model that covers both the stationary and the intrinsically stationary case.
Links

Letztmalig verändert: 23.10.2018, 15:57:36

Veranstaltungsort

TUD Willers-Bau (WIL A 124)Zellescher Weg12-1401069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/wil/00

Veranstalter

TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
Telefon
49-351-463 33376
Homepage
http://tu-dresden.de/mathematik
Scannen Sie diesen Code mit Ihrem Smartphone and bekommen Sie die Veranstaltung direkt in Ihren Kalender. Sollten Sie Probleme beim Scannen haben, vergrößern Sie den Code durch Klicken darauf.
  • AuAusgründung/Transfer
  • BaBauing., Architektur
  • BiBiologie
  • ChChemie
  • ElElektro- u. Informationstechnik
  • Sfür Schüler:innen
  • GsGesellschaft, Philos., Erzieh.
  • InInformatik
  • JuJura
  • MwMaschinenwesen
  • MtMaterialien
  • MaMathematik
  • MeMedizin
  • PhPhysik
  • PsPsychologie
  • KuSprache, Literatur und Kultur
  • UmUmwelt
  • VeVerkehr
  • WeWeiterbildung
  • WlWillkommen
  • WiWirtschaft