Provably efficient machine learning for quantum many-body problems
- Datum
- 24.02.2025
- Zeit
- 16:30 - 17:30
- Sprecher
- Prof. Richard Kueng
- Zugehörigkeit
- Johannes Kepler Universität Linz
- Serie
- MPI-PKS Kolloquium
- Sprache
- en
- Hauptthema
- Physik
- Andere Themen
- Physik
- Beschreibung
- Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over traditional methods have not been firmly established. In this work, we prove that classical ML algorithms **can** efficiently learn to predict important properties of a quantum many-body system. In particular, ML can provably predict ground-state properties of gapped Hamiltonians after learning from other Hamiltonians in the same quantum phase of matter. Our proof technique combines signal processing with quantum many-body physics and also builds upon the recently developed framework of classical shadows. I will try to convey the ideas and also present numerical experiments that confirm our theoretical findings. This colloquium talk is based on joint work with Hsin-Yuan (Robert) Huang, Giacomo Torlai, Victor Albert and John Preskill, see [Huang et al., Provably efficient machine learning for quantum many-body problems, Science 2022]
Letztmalig verändert: 01.02.2025, 07:36:00
Veranstaltungsort
Max-Planck-Institut für Physik komplexer SystemeNöthnitzer Straße3801187Dresden
- Telefon
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Veranstalter
Max-Planck-Institut für Physik komplexer SystemeNöthnitzer Straße3801187Dresden
- Telefon
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft