Mt

Advancing Co-Resonant Micro/Nano-Systems and Bioelectronic Interfaces for Next-Generation Devices

Datum
08.12.2025
Zeit
15:00 - 16:00
Sprecher
Dr. Julia Körner
Zugehörigkeit
Uni Hannover
Sprache
en
Hauptthema
Materialien
Host
Rita Taubert
Beschreibung
Interconnected micro- and nano-systems and personalized health care represent two rapidly advancing future fields that both call for multidisciplinary innovations spanning engineering, materials science and physics in both fundamental and applied domains. This presentation highlights two pioneering directions of my research: a co-resonance principle in dissimilar dynamic resonant MEMS/NEMS systems, and the development of multifunctional composite materials targeting the seamless integration of biological and inorganic environments. The concept of co-resonance is based on eigenfrequency matched coupled resonators with strongly dissimilar material and geometric properties. Its substantial potential has been comprehensively demonstrated for cantilever-based sensors. Thereby, a micro- and a nanocantilever are linked through the co-resonant state, enabling the combination of the very high susceptibility of the nanoresonator to external interactions with well-established oscillation detection of the microcantilever. Beyond sensing applications, the co-resonance principle is of general fundamental nature. Future research aims to explore its potential for micro- and nanoscale energy harvesting to power autonomous sensors and corresponding networks in remote or inaccessible locations, as well as to innovate cross-physical coupling among electrical, mechanical, optical, and even biological systems. Research on multifunctional composite materials focuses on creating bioelectronic interfaces that integrate biological systems with electronic devices for biomedical applications. In the presented developments, stimulus-responsive hydrogels capable of undergoing volume-phase transitions under external influences form the core platform. Their properties are further refined through the incorporation of inorganic additives such as MXenes, carbon-based materials, and metal nanoparticles, enabling precise tuning of electrical, mechanical, and responsive characteristics. The overarching goal is to merge sensing and stimulation functions within biological environments through transducers, ultimately embedding them into wearable and implantable devices that advance personalized medicine and lifestyle-oriented technologies.
Links

Letztmalig verändert: 05.12.2025, 07:38:00

Veranstaltungsort

Leibniz Institut für Festkörper- und Werkstoffforschung Dresden (B3E.26, IFW Dresden)Helmholtzstraße2001069Dresden
Homepage
http://www.ifw-dresden.de

Veranstalter

Leibniz Institut für Festkörper- und Werkstoffforschung DresdenHelmholtzstraße2001069Dresden
Homepage
http://www.ifw-dresden.de
Scannen Sie diesen Code mit Ihrem Smartphone and bekommen Sie die Veranstaltung direkt in Ihren Kalender. Sollten Sie Probleme beim Scannen haben, vergrößern Sie den Code durch Klicken darauf.
  • AuAusgründung/Transfer
  • BaBauing., Architektur
  • BiBiologie
  • ChChemie
  • ElElektro- u. Informationstechnik
  • Sfür Schüler:innen
  • GsGesellschaft, Philos., Erzieh.
  • InInformatik
  • JuJura
  • MwMaschinenwesen
  • MtMaterialien
  • MaMathematik
  • MeMedizin
  • PhPhysik
  • PsPsychologie
  • KuSprache, Literatur und Kultur
  • UmUmwelt
  • VeVerkehr
  • WeWeiterbildung
  • WlWillkommen
  • WiWirtschaft