Beyond independent component analysis: identifiability and algorithms
- Datum
- 29.01.2026
- Zeit
- 15:00 - 16:00
- Sprecher
- Alvaro Ribot
- Zugehörigkeit
- Harvard University
- Sprache
- en
- Hauptthema
- Biologie
- Host
- Local Organisors: Nikola Sadovek, Maximilian Wiesmann, Giulio Zucal
- Beschreibung
- Independent Component Analysis (ICA) is a classical method for recovering latent variables with useful identifiability properties. However, full independence is a strong assumption that may not hold in many real-world settings. In this talk, I will discuss how much we can relax the independence assumption without losing identifiability of the model. We show that the weakest such assumption is pairwise mean independence. Our identifiability result is based on a generalization of the spectral theorem from matrices to higher-order tensors, which implies a unique tensor decomposition of the cumulant tensors arising in the model. This is joint work with Anna Seigal and Piotr Zwiernik.
Letztmalig verändert: 29.01.2026, 07:39:49
Veranstaltungsort
Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG CSBD SR Top Floor (VC))Pfotenhauerstraße10801307Dresden
- Telefon
- +49 351 210-0
- Fax
- +49 351 210-2000
- MPI-CBG
- Homepage
- http://www.mpi-cbg.de
Veranstalter
Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße10801307Dresden
- Telefon
- +49 351 210-0
- Fax
- +49 351 210-2000
- MPI-CBG
- Homepage
- http://www.mpi-cbg.de
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft
