Weyl's Laplacian eigenvalue asymptotics for the measurable Riemannian structure on the Sierpinski gasket
- Datum
- 10.05.2012
- Zeit
- 14:50 - 15:50
- Sprecher
- Naotaka Kajino
- Zugehörigkeit
- Universität Bielefeld
- Serie
- TUD Mathematik AG Analysis & Stochastik
- Sprache
- en
- Hauptthema
- Mathematik
- Andere Themen
- Mathematik
- Host
- Prof. Dr. R. Schilling
- Beschreibung
- Bitte geänderte Anfangszeit beachten (am 09.05.2012 eingetragen)! On the Sierpinski gasket, Kigami [Math. Ann. 340 (2008), 781--804] has introduced the notion of the measurable Riemannian structure, with which the ``gradient vector fields" of functions, the ``Riemannian volume measure" and the ``geodesic metric" are naturally associated. Kigami has also proved in the same paper the two-sided Gaussian bound for the corresponding heat kernel, and I have further shown several detailed heat kernel asymptotics, such as Varadhan's asymptotic relation, in a recent paper [Potential Anal. 36 (2012), 67--115]. In the talk, Weyl's Laplacian eigenvalue asymptotics is presented for this case. The correct scaling order for the asymptotics of the eigenvalues is given by the Hausdorff dimension d of the gasket with respect to the ``geodesic metric", and in the limit of the eigenvalue asymptotics we obtain a constant multiple of the d-dimensional Hausdorff measure. Moreover, we will also see that this Hausdorff measure is Ahlfors regular with respect to the ``geodesic metric" but that it is singular to the ``Riemannian volume measure".
- Links
Letztmalig verändert: 09.05.2012, 16:21:19
Veranstaltungsort
TUD Willers-Bau (WIL A120)Zellescher Weg12-1401069Dresden
- Homepage
- https://navigator.tu-dresden.de/etplan/wil/00
Veranstalter
TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
- Telefon
- 49-351-463 33376
- Homepage
- http://tu-dresden.de/mathematik
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft