On the Range of a Random Walk
- Datum
- 10.06.2014
- Zeit
- 11:00 - 12:00
- Sprecher
- Prof. Davar Khoshnevisan
- Zugehörigkeit
- The University of Utah, Salt Lake City, USA
- Serie
- TUD Mathematik AG Analysis & Stochastik
- Sprache
- en
- Hauptthema
- Mathematik
- Andere Themen
- Mathematik
- Host
- Prof. Dr. R. Schilling
- Beschreibung
- We will present a solution to an open problem of M.T. Barlow and S.J. Taylor (1994) by describing an index which can be used to compute the "large-scale Hausdorff dimension” of the range of an arbitrary random walk on Z^d. A nice byproduct of our methods is a Euclidean form of an old characterization theorem of recurrent sets by J. Lamperti (1963). The basic ideas is to define a “large-scale fractal percolation process,” akin to the Mandelbrot percolation process on $R^d$, and use intersection ideas of Peres (1996) together with potential-theoretic techniques for multi-parameter Markov processes (Khoshnevisan, 2001). The most novel part of our method involves a forest representation of Z^d which might have other uses as well. All terminology, particularly those in quotations, will be defined precisely in the talk. A number of open problems will be presented as well. This is joint work with Nicos Georgiou [Sussex], Kunwoo Kim [Utah], and Alex Ramos [Pernambuco].
- Links
Letztmalig verändert: 06.06.2014, 19:23:23
Veranstaltungsort
TUD Willers-Bau (WIL A 124)Zellescher Weg12-1401069Dresden
- Homepage
- https://navigator.tu-dresden.de/etplan/wil/00
Veranstalter
TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
- Telefon
- 49-351-463 33376
- Homepage
- http://tu-dresden.de/mathematik
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft