MtPh

Bound states of charges on top of graphene in magnetic field and edge states in graphite

Date
Oct 28, 2015
Time
1:30 PM - 2:30 PM
Speaker
Dr. Sergey Slizovskiy
Affiliation
Department of Physics, Loughborough University
Language
en
Main Topic
Materialien
Other Topics
Materialien, Physik
Host
Grit Rötzer
Description
I show theoretically that in the external magnetic field like charges on top of graphene monolayer may be mutually attracted to form macro-molecules. For this to happen graphene needs to be in Quantum Hall plateau state with local chemical potential being between the Landau levels. Graphene electron(s) gets localized in the middle between charges and provides overscreening of Coulomb repulsion between the charges. The size of the resulting macro-molecules is of the order of the magnetic length ($sim 10$ nm for magnetic field 10 T). The possible stable macro-molecules that unit charges can form on graphene in magnetic field are classified. The binding survives significant temperatures, exceeding mobility barriers for many ionically bond impurities. The influence of possible lattice-scale effects of valley-mixing are discussed. Tuning the doping of graphene or the magnetic field, the binding of impurities can be turned on and off and the macro-molecule size may be tuned. This opens the perspective to nanoscopic manipulation of ions on graphene by using magnetic field and gating. In a second part of the talk I will discuss the use of topological invariants to find the edge states in rhombohedral graphite with tilted edge. Different patterns arise for different tilt angles and directions of tilt.
Links

Last modified: Oct 28, 2015, 9:04:57 AM

Location

Leibniz Institut für Festkörper- und Werkstoffforschung Dresden (D2E.27, IFW Dresden)Helmholtzstraße2001069Dresden
Homepage
http://www.ifw-dresden.de

Organizer

Leibniz Institut für Festkörper- und Werkstoffforschung DresdenHelmholtzstraße2001069Dresden
Homepage
http://www.ifw-dresden.de
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome