Ph

Imaging putative Majorana modes and quasiparticle poisoning in superconducting vortices

Date
Nov 13, 2023
Time
2:50 PM - 4:20 PM
Speaker
Jianfeng Ge
Affiliation
MPI-CPfS
Series
TUD Physik-IFMP Institutsseminar
Language
en
Main Topic
Physik
Other Topics
Physik
Host
D. Peets
Description

Abstract:

For a superconductor in the vortex state, quasiparticles can localize as bound states in the vortex cores where the superconducting order parameter vanishes, but they can also escape the cores. Understanding localized quasiparticles, such as distinguishing between Majorana and trivial vortex bound states, is one of the prime tasks in quantum condensed matter physics, since Majorana bound states are predicted as promising candidates for error-resistant qubits. On the other hand, tracing the delocalized quasiparticles is crucial in minimizing quasiparticle poisoning of Majorana bound states for qubit applications. Local shot noise measurements have been suggested to distinguish different vortex bound states, and more generally, as a probe into vortex physics, but despite much theoretical work, no local measurement of the shot noise of a vortex core exists.

In this talk, I will show the first local shot-noise spectroscopy to study the tunneling process into the vortex cores of both a conventional superconductor NbSe2 and the putative Majorana platform FeTe0.55Se0.45. We find that tunneling into vortex bound states in both cases exhibit charge transfer of a single electron charge. Our data for the zero-energy bound states in FeTe0.55Se0.45 excludes the possibility of Yu-Shiba-Rusinov states and is consistent with Majorana bound states. However, it is also consistent with trivial vortex bound states. As a step further, we visualized, for the first time, the delocalized quasiparticles around vortices in NbSe2 by shot-noise imaging. We find that quasiparticle poisoning dominates when vortices are less than 4 times the coherence length apart. Our results set a new length scale for quasiparticle poisoning in vortex-based Majorana qubits and yield information on the effect of vortices in quantum circuits.

BigBlueButton: https://bbb.tu-dresden.de/b/dar-mbs-me8-gsc (https://bbb.tu-dresden.de/b/dar-mbs-me8-gsc)

Links

Last modified: Nov 13, 2023, 7:37:38 AM

Location

TUD (REC/C213)
Homepage
https://navigator.tu-dresden.de/

Organizer

TU Dresden, Faculty of Science, Department of PhysicsHaeckelstraße301069Dresden
Phone
+49 351 463-33378
Fax
+49 351 463-37109
E-Mail
TUD Physik
Homepage
http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_mathematik_und_naturwissenschaften/fachrichtung_physik
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome