Ph

Predicting the electronic structure of matter at scale with machine learning

Date
Oct 17, 2024
Time
1:00 PM - 3:00 PM
Speaker
Attila Cangi
Affiliation
Helmholtz-Zentrum Dresden-Rossendorf
Series
TUD nanoSeminar
Language
en
Main Topic
Physik
Other Topics
Physik
Host
Arezoo Dianat
Description
In this presentation, I will discuss our recent advancements in utilizing machine learning to significantly enhance the efficiency of electronic structure calculations [1]. Specifically, I will focus on our efforts to accelerate Kohn-Sham density functional theory calculations by incorporating deep neural networks within the Materials Learning Algorithms framework [2,3]. Our results demonstrate substantial gains in calculation speed for metals across their melting point. Additionally, our implementation of automated machine learning has resulted in significant savings in computational resources when identifying optimal neural network architectures, laying the foundation for large-scale investigations [4]. Furthermore, I will present our most recent breakthrough, which enables neural-network-driven electronic structure calculations for systems containing over 100,000 atoms [5]. This achievement opens up new avenues for studying complex materials systems that were previously computationally intractable. 
 
 [1] L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Phys. Rev. Materials, 6, 040301 (2022) 
 [2] A. Cangi, J. A. Ellis, L. Fiedler, D. Kotik, N. A. Modine, V. Oles, G. A. Popoola, S. Rajamanickam, S. Schmerler, J. A. Stephens, A. P. Thompson, Phys. Rev. B 104, 035120 (2021). 
 [3] J. Ellis, L. Fiedler, G. Popoola, N. Modine, J. Stephens, A. Thompson, A. Cangi, S. Rajamanickam, Phys. Rev. B, 104, 035120 (2021) 
 [4] L. Fiedler, N. Hoffmann, P. Mohammed, G. Popoola, T. Yovell, V. Oles, J. Austin Ellis, S. Rajamanickam, A. Cangi, Mach. Learn.: Sci. Technol., 3, 045008 (2022) 
 [5] L. Fiedler, N. Modine, S. Schmerler, D. Vogel, G. Popoola, A. Thompson, S. Rajamanickam, A. Cangi, npj. Comput. Mater., 9, 115 (2023)
Links

Last modified: Oct 17, 2024, 7:39:08 AM

Location

TUD Materials Science - HAL (HAL Bürogebäude - 115)Hallwachsstraße301069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/hal/00

Organizer

TUD Institute for Materials ScienceHallwachsstr.301069Dresden
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome