Ph

Novel approaches for ab initio simulations of hybrid nanomaterials

Date
Dec 12, 2024
Time
1:00 PM - 3:00 PM
Speaker
Caterina Cocchi
Affiliation
Carl von Ossietzky Universität Oldenburg
Series
TUD nanoSeminar
Language
en
Main Topic
Physik
Other Topics
Physik
Host
Arezoo Dianat
Description
Simulating realistic nanomaterials composed of organic and inorganic components remains a significant challenge for traditional ab initio methods. The disparity in constituent sizes and characteristics as well as the complexity for the involved physical processes necessitate the development of innovative approaches that balance rapid screening of diverse configurations with reliable electronic structure description. In this seminar, I will present recent advancements from my group in simulating complex materials, particularly hybrid compounds. After clarifying the limitations of brute-force simulations of organic/inorganic interfaces [1], I will introduce LayerPCM [2], an efficient to accurately predict frontier-level energies and band lineups [3-5]. Finally, I will present aim2dat [6], a recently implemented Python library for high-throughput screening simulations of medium-size configurational spaces [7,8], focusing on its application to metal-organic frameworks [9,10].
 
 References
 [1] J. Krumland and C. Cocchi, Conditions for electronic hybridization between transition-metal dichalcogenide monolayers and physisorbed carbon-conjugated molecules, Electron. Struct. 3, 044003 (2021).
 [2] J. Krumland, G. Gil, S. Corni, and C. Cocchi, LayerPCM: An implicit scheme for dielectric screening from layered substrates, J. Chem. Phys. 154, 224114 (2021).
 [3] J. Krumland and C. Cocchi, Electronic structure of low-dimensional inorganic/organic interfaces: Hybrid density functional theory, G0W0, and electrostatic models, Phys. Status Solidi A 221, 2300089 (2024).
 [4] B. Tanda Bonkano, S. Palato, J. Krumland, S. Kovalenko, P. Schwendke, M. Guerrini, Q. Li, X. Zhu, C. Cocchi, and J. Stähler, Evidence for hybrid inorganic-organic transitions at the WS2/terrylene interface, Phys. Status Solidi A 221, 2300346 (2024).
 [5] J. Krumland and C. Cocchi, Ab Initio Modelling of Mixed-Dimensional Heterostructures: A Path Forward, J. Phys. Chem. Lett. 15, 5350 (2024).
 [6] https://github.com/aim2dat/aim2dat
 [7] H.-D. Saßnick and C. Cocchi, Exploring the Cs-Te phase space via high-throughput density-functional theory calculations beyond the generalized-gradient approximation, J. Chem. Phys. 156, 104108 (2022).
 [8] H.-D. Saßnick and C. Cocchi, High-throughput analysis of surface facets: The example of cesium telluride, npj Comput. Mater. 10, 28 (2024).
 [9] H.-D. Saßnick, F. Machado Ferreira De Araujo, J. Edzards, and C. Cocchi, Impact of Ligand Substitution and Metal Node Exchange in the Electronic Properties of Scandium Terephthalate Frameworks, Inorg. Chem. 63, 2098 (2024).
 [10] J. Edzards, H.-D. Saßnick, J. Santana Andreo, and C. Cocchi, Tuning Structural and Electronic Properties of Metal-Organic Framework 5 by Metal Substitution and Linker Functionalization, J. Chem. Phys. 160, 184706 (2024).
Links

Last modified: Dec 15, 2024, 8:21:22 AM

Location

TUD Materials Science - HAL (HAL Bürogebäude - 115)Hallwachsstraße301069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/hal/00

Organizer

TUD Institute for Materials ScienceHallwachsstr.301069Dresden
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome