Nuclear spins in semiconductor quantum dots: a many-body quantum system with interesting physics and prospective applications in quantum technologies
- Date
- Nov 25, 2024
- Time
- 4:30 PM - 5:30 PM
- Speaker
- Dr. Evgeny Chekhovich
- Affiliation
- University of Sussex
- Series
- MPI-PKS Kolloquium
- Language
- en
- Main Topic
- Physik
- Other Topics
- Physik
- Description
- Epitaxial semiconductor quantum dots (QDs) have long been investigated in the context of quantum physics and quantum information processing (QIP). The solid-state nature of the quantum dots poses many challenges. One such challenge comes from the magnetic moments of the atomic nuclei that make up the crystal lattice of a QD. The dense 3D lattice of the nuclear spins often acts as a source of magnetic noise, limiting quantum coherence of the electron and photon qubits. However, introduction of a new generation of low-strain optically-active GaAs/AlGaAs QDs has shifted the paradigm with recent efforts focused on harnessing nuclear spin magnetism as a testbed for fundamental quantum physics and QIP applications. The advances of the past few years include demonstrations of electron [1] and nuclear [2] spin qubits in a semiconductor quantum dot, as well as reversible transfer of quantum states between electron and nuclear spins [3], offering a pathway to implementation of a solid-state quantum memory. I will discuss recent advanced both in fundamental physics and prospective applications of QD nuclear spins in QIP. Recent findings include an experimental answer to the long-standing dilemma of nuclear spin diffusion in a central-spin model [4]; ferromagnetic ordering of nuclear spin ensembles, with record-high polarisations exceeding 95% [5]; nondemolition measurement of the central electron spin through entanglement with a nuclear spin ensemble [6], which allows for single-shot qubit readout with fidelities exceeding 99.85%. Moreover, we show how strain-engineering of semiconductor lattice can be used to turn the nuclear spin ensemble into an efficient quantum memory, which can store coherent states for very long times, exceeding 100 ms. [1] L. Zaporski et al., Nature Nano 18, 257 (2023) [2] E. A. Chekhovich et al., Nature Nano 15, 999 (2020) [3] M. Appel, et al., arXiv:2404.19680 (2024) [4] P. Millington-Hotze, et al., Nature Comm. 14, 2677 (2023) [5] P. Millington-Hotze, et al., Nature Comm. 15, 985 (2024) [6] H. Dyte et al., Phys. Rev. Lett. 132, 160804 (2024)
Last modified: Nov 21, 2024, 7:40:05 AM
Location
Max-Planck-Institut für Physik komplexer SystemeNöthnitzer Straße3801187Dresden
- Phone
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Organizer
Max-Planck-Institut für Physik komplexer SystemeNöthnitzer Straße3801187Dresden
- Phone
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Legend
- Biology
- Chemistry
- Civil Eng., Architecture
- Computer Science
- Economics
- Electrical and Computer Eng.
- Environmental Sciences
- for Pupils
- Law
- Linguistics, Literature and Culture
- Materials
- Mathematics
- Mechanical Engineering
- Medicine
- Physics
- Psychology
- Society, Philosophy, Education
- Spin-off/Transfer
- Traffic
- Training
- Welcome