Network Search from a Game Theoretic Perspective
- Datum
- 23.11.2015
- Zeit
- 13:30 - 14:30
- Sprecher
- Steve Alpern
- Zugehörigkeit
- U. of Warwick
- Sprache
- en
- Hauptthema
- Physik
- Andere Themen
- Physik
- Host
- Advanced Study Group Klages
- Beschreibung
- A searcher wishes to find an unknown point H (hidden object or prey) on a given metric network Q. The searcher typically starts from a known point O and moves at unit speed on Q until the first time T that he reaches H. The approach studied here, formulated by Isaacs [1] is to view this problem as a zero-sum game with the capture time T as payoff. The hider (who chooses H) is the maximizer, and the searcher (who chooses a search path S(t) ) is the minimizer. The approach is equivalent to viewing the searchers problem as a game against nature, but it also gives any real hider advice as to the optimal distribution of choosing H. The classical theory begins in 1979 with the work of Gal [2] for trees Q, and culminates with Gals extension of the tree theory to weakly Eulerian networks in 2000 [3]. In between, many other researchers contributed to the theory. Here, we review the classical theory and present extensions in various directions that enlarge the applicability and theory of such search games. [1] R. Isaacs. Differential Games. John Wiley & Sons, New York, 1965. [2] S. Gal. Search games with mobile and immobile hider. SIAM Journal on Control and Optimization 17:99122, 1979. [3] S. Gal. On the optimality of a simple strategy for searching graphs. International Journal of Game Theory 29:533 542, 2000.
Letztmalig verändert: 23.11.2015, 08:42:42
Veranstaltungsort
Max-Planck-Institut für Physik komplexer Systeme (Seminarroom 4)Nöthnitzer Straße3801187Dresden
- Telefon
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Veranstalter
Max-Planck-Institut für Physik komplexer SystemeNöthnitzer Straße3801187Dresden
- Telefon
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft